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Abstract. We consider the most general form of time-dependent charged harmonic oscil- 
lators in an electromagnetic field. The quantum mechanical solution is developed and the 
Green function is derived. Furthermore, we use gauge-invariant formulation of quantum 
mechanics to obtain the transition probabilities in the electric dipole approximation. 

1. Introduction 

Recently, there has been considerable interest in time-dependent harmonic oscillators 
(TDHO), such as the variable-mass oscillator (which, e.g., arises in the Fabry-Perot 
cavity) and the variable-frequency oscillator (e.g. which arises in the slowly lengthening 
pendulum) (Colegrave and Abdalla 1981, 1982, 1983, Leach 1983). Landovitz et a1 
(1979) has presented a formalism for TDHO, developed a quantum mechanical solution 
and derived a Green function. The behaviour of TDHO in an electromagnetic field is 
also a very important problem in practice. In this paper, we shall generalise Landovitz’s 
formalism to treat this problem. For simplicity we use the electric dipole approximation 
(EDA) (Kobe 1982). Furthermore, in order to obtain the transition probabilities of 
TDHO in the EDA, we shall use the gauge-invariant formulation of quantum mechanics 
( G I F )  (Yang 1976, 1982, 1983, 1985, Kobe and Smirl 1978, Kobe and Wen 1982, Kobe 
1984). 

2. Generalised Landovitz’s formalism 

The Hamiltonian of TDHO in the Coulomb gauge in the EDA is 

H =f( t ) [  p - ( q / c ) A (  t)]’/2m + g( t )$mwix’  (1) 

where A ( t )  is the vector potential at the origin, which is chosen to be a transverse 
field; the scalar potential A. is chosen to be zero. The Hamiltonian equations yield 

aH 4 
aP 

x = - = f (  t )  ( p - ; A )  m - I  = f (  t)n/ m 
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where n is the mechanical momentum. Landovitz et a1 introduced the operators 6, 
and 6- ,  which are defined by 

S- W Qian, Y-T Hu and J-S Wang 

6, = u'du 6- = u6u' (4) 

where U is the evolution operator (Cohen-Tannoudji et a1 1977). When there is no 
electromagnetic field, A (  t )  = 0, lI = p ,  Landovitz et a1 made the following assumption: 

2, = a ( r ) 2 +  b(t)$ $+ = c ( t ) 2 +  d (  I)$. ( 5 )  

2, = a (  r ) ;  + b( t ) f i+  U( t )  (6) 

Now, when there is an electromagnetic field we shall generalise ( 5 )  to 

l?, = c( t )2+  d ( t ) f i +  U( t )  

where 

a(0 )  = d ( 0 )  = 1 b(0) = ~ ( 0 )  = ~ ( 0 )  = ~ ( 0 )  = 0. ( 7 )  

When there is no electromagnetic field 

u( t )  = u ( t )  = 0 

and (6) reduces to (5 ) .  

relation 
For H expressed by ( l ) ,  x and p are taken as operators satisfying the commutation 

[i, $1 = ih. ( 9 )  

From 

au 
a t  

ih-= HU 

we obtain 

d 6 ,  - 1 [B,, f i+I+($) . 
d t  ih + 

Specifically 

d i +  1 
d t  ih  - [i+, ri+I 

- [$+, A+1 d$+ 1 
dr ih 

Also (4) and (9) imply 

[it, $+I = ih. 

Application of (12)-(15) to the Hamiltonian H in (1) yields respective equations 
identical to (2)-(3) with x replaced by the operator 2, and p replaced by the operator 
$+ and, II replaced by the operator l?,. By assumption (6) and the corresponding 
operator equations (2) - (3)  we obtain 

m d a  m d b  m du c ( t ) = - -  d ( t ) = - -  d r  u ( t ) = - - - .  
f d l  f d t  
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The condition 

[ i t ,  fi,] = [i, I?] 

requires 

a b - b c = l .  

Assuming the oscillator to be in a state In) at t = 0, we compute the expectation values 
of 2’ and i2 at a later time t, denoted by (i:)n and (i:),,, respectively. By means of 
annihilation and creation operators we obtain 

(n l i21n)  = ( n + f ) h / m w o  (nlp*’ln)= ( n + t ) m h w o  (nI$+$;In) = 0. (19) 

The operator i!+ is related to fi+ through (2),  i.e. 

i!, =f( t ) I? , /m.  (20) 

(i2)n = (a2+  m2wtb’)( n + f ) h / m w o +  ( u  - bqA/c)’ 

Using ( 6 ) ,  (19) and (20), we obtain 

(21) 

(22) 

Now we shall find the six functions a, b, c, d,  U, U in (6) for a particular case, the 

(it),, = f 2 [ ( l / m 2 w ~ ) c 2 +  d 2 ] ( n  + i ) h w o / m  +(f’ /m’)(  U - dqA/c)’. 

dissipative harmonic oscillator. In this case 

f(t) = exp(- t / r )  = exp(f/T) (23) 

x + ( I / T ) X +  w i x  - ( q / m )  exp(- t / r )E  = 0. (24) 

the equation of motion is 

From (24) we obtain the operator equation of 2+ by replacing .r with x^+. For the 
electric field 

(25) E = E ,  sin(Rt - 4 )  

x^+ = e x p ( - t / 2 r ) ( 0 ,  cos w t  + O2 sin at)+ B exp(-r/.r) sin Rr 

the solution obtained is 

(26) 
where 

(U : -  1/4~’)” ’  B =  4 =tan-’  ___ (27) 4Eo 
~ [ ( ~ ~ - R ~ ) ’ + R * / T * ] ’ ’ ~  w ; - n 2  

and 0, and O2 are operators to be determined. From (20) 

d i +  n, =exp(t/r)m--. 
d t  

At t = O  

d i +  II 
d t  m ’  

- A A  x+ = x 

Thus 
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and hence we obtain 

a = exp( -t/27)[cos wt  + (1/2w7) sin ut ]  

c = -exp( t /2~)m[w + ( I / ~ w T ~ ) ]  sin wt  

U = ( B / w )  exp(-t/.)[w sin at -n exp(t /2r)  sin ut] 

v = ( B n / ~ )  e x p ( - t / 7 ) [ 7 c o s n t - ( l / f l )  s i n a t  

b = exp(-t/2r)  - sin wt  (A) 
d = exp( t/27)[cos w t  - (1/2w7) sin ut] 

(31) 

+ (1/2w) exp( t / 2 7 )  sin ut - r exp(t/27) cos ut].  

From (31) we know that four functions a, b, c, d are the same as that obtained by 
Landovitz et a1 in the case of absence of an electromagnetic field and two functions 
U and v disappear as expected when there is no electromagnetic field. Similarly, we 
can obtain the results corresponding to the three other particular cases discussed by 
Landovitz et al. Of course, when there is no electromagnetic field, all our results reduce 
to that of Landovitz. 

3. Green function 

The Green function is defined by (Cohen-Tannoudji et a1 1977) 

(XI U ~ X ‘ )  = G(x,  x’; t ) .  

The wavefunction $(x, t )  is obtainable from $(x, 0) by the formula 

$(x, t )  = 1-t G(x, x’; t)$(x’, 0) dx’ 

The boundary condition 

lim $(x, t )  = $(x, 0) 
1-0 

implies 

lim G(x, x’; t )  = S(x’-x) .  
1-0 

From (32) 

(XI Ui+Ix’)  = (xl,?UIx’) = xG(x, x’; t )  

( x l U p ^ l x ’ ) = i h ( d / d x ’ ) G ( x ,  x’; t )  

( x l U f t l x ’ ) = i h ( a / a x ‘ ) G ( x ,  x’; t ) - (qA/c)G(x, x’; t ) .  

Substituting (6)  in (36) and using (38) we obtain 

Thus we obtain 

C 

(33) 

(34) 

(35) 
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By the following formulae 

(xi;- Ulx’)  = ( X I  Ui lx ’ )  = x ‘ G ( x ,  x’;  t )  

h a  q A  ( x l f i U I x ’ ) = ~  -G(x ,x ’ ;  ~ ) - - G ( x , x ‘ ;  t )  
I ax C 

2- = d i -  b f i  - (  ud - vb)  

we obtain 

aG i bqA 
ax hb C 
- = - (dx - x’+ - - ud + vb 

From (40)  

Thus 

2 bqA 2 vb 
g ( x ,  t )  = F ( t )  exp[ ($)( xz+- cd x - 2 U X  + - d .)] 

(44)  

Hence 

[(k) G ( x ,  x’; 1 )  = F (  t )  exp 

(47 )  
2 bqA 

dx’+ ax“ -2xx’+-(x - x‘)  -2(  ud - vb)x+2ux‘ 
C 

The expression for F (  t )  can be obtained from ( 3 4 ) ;  the result is 

F (  t )  = 1/(27rihb)’ ’. (48 )  

Therefore 

2 bqA 
G ( x ,  x’;  t )  = (E)”? exp[ ip( dx’+ ax” -2xx’+-(x - x’)  -2(ud - vb)x+2ux’  

C 

( 49 )  

where 

1 p=- -  
2hb 

For an operator 6, the expectation value at time t is 

(O) ,  = $ T ( ~ ,  t ) 6 $ ( x ,  t )  d x  

1 X 

= 1, d x  
dx’ dx” 4 T ( x ” ,  O)GT(x, x”; t ) 6 G ( x ,  x’; t ) $ ( x ‘ ,  0 ) .  ( 5 1 )  

When there is no electromagnetic field, A = U = U = 0, (49 )  reduces to the result given 
by Landovitz et al. For the case of a strongly pulsating mass, it reduces to the result 
given by Colegrave and Abdalla (1983). 
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Now we are going to calculate expectation values of some important quantities by 
equation (51) .  I f  the oscillator is in a, state n = 0 at t = 0, then we can obtain the 
expectation values of operators .f and n through quite a tedious calculation: 

(2)= U - bqA/c (52)  

(A) = U - dqA/ c. (53)  

When there is no electromagnetic field, the above two expectation values are equal to 
zero as expected. 

4. Transition probability 

Recently, Yang and Kobe have developed G I F  for obtaining gauge-independent proba- 
bility amplitudes. Now we shall use G I F  to discuss TDHO in EDA. The dark Hamiltonian 
of TDHO is (Landovitz 1979) 

H,, = f (  t )p2/2m + g (  t ) $ m o i x 2 .  (54)  

In general, in an  electromagnetic field the Hamiltonian is 

H = f ( t ) ( p - q A / c ) * / 2 m + g ( t ) ~ m o ~ x 2 + q A , .  (55)  

Yang’s energy operator is (Yang 1976) 

% = H - qAo = f ( t ) (  p - qA/c)’/2m + g (  t ) imwix2.  (56)  

In the Coulomb gauge in the EDA the Hamiltonian is given by ( 1 )  and in this case the 
energy operator is the same as the Hamiltonian. The eigenvalue problem for the energy 
operator is 

(57)  

When we make the gauge transformation with the gauge function (Kobe and  Wen 1982) 

A(x, t ) = - A ( t ) x  (58) 

[ f (  t ) ( p  - qA( t ) /  c l2 /2m + g (  t ) f m w t ~ ’ I + ~  = En+,.  

new potentials are 

A ’ = O  Ah = - E (  t ) ~  (59) 

the gauge-transformed energy eigenvalue problem is 

When we make the following transformations: 

equation (60) becomes 
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Comparing (62) with the equation for a free harmonic oscillator, we readily obtain 
(Merzbacher 1970) 

(63 1 

(64) 

~ , , ( t )  = ( n  +. f )hw  = ( n  +t)(f(t)g(t))"2fiwo 

$L = N,(-l)" exp( t2 /2)  y [ e x p ( - t 2 ) I  
d" 

d t  

where 
1/2  

x 

The equation of motion for c , ( t )  = ($"I$) is (Kobe and Smirl 1978) 

Noting N,, and 6 are all functions of time, we obtain 

$; -.$,,, = - ~ [ n ( n - l ) ] ' / ~ 8 ~ , , ~ ~ + u [ ( n + l ) ( n + 2 ) ] ' / ~ 6 ~ , , + ~  (70) ( l:t ' >  
where 

Equation (67) then becomes 

+ i f i u { [ n ( n  - ~ ) ] ' / ' c , - ~ - [ ( n +  l ) ( n + 2 ) ] ' ~ ' ~ , , + ~ } .  (72) 
Equation (72) shows that there are transitions from the state n u p  to the state n + 1, 
n + 2, and down to the state n - 1 ,  n - 2. Equation (72) is the general equation for 
obtaining transition probabilities of TDHO in the EDA. In  particular, it can be used to 
solve variable mass harmonic oscillator problems and  variable frequency harmonic 
oscillator problems. In this paper we only give the approximate solution for dissipative 
harmonic oscillator in a special case. 

For a dissipative harmonic oscillator, using (23) and  assuming 

E ( t ) = E , s i n R t  (73) 
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In  the case n 6 1, (74) reduces to 

ihi ,  - ~ , c ,  = - y h w o j ( r ) ( n " 2 c , ~ , + ( n + ~ ) " 2 c , + , ) - i h k [ ( n + ~ ) ( n + ~ ) ] 1 ~ ' c , + ~ .  (79) 

Now we use an  approximation such that, for n 6 3, the solution of c, can be written 
as (Kobe and Wen 1982) 

(80) 

where the function Q and /3 are to be determined. When (80) is substituted into (79) 
we obtain 

( iQ+ywoj( t ) -ooQ)Q- 'ncf l  = f w , + b + i -  -- 

For this equation to be valid for n = 0, 1, it is necessary that both sides vanish identically: 

(82) 

c , ( t )  = exp( iP( r ) ) (n  !)-"'[Q(wot)l" exP(-iIQ(wot)l') 

d l Q ' 2  ywoj ( t )Q- ikQ'  c,. (81) ( 2 d t  1 
i Q +  ywoj( t )  - woQ = 0 

Noting that Im j( 2 )  = 0, from (83) we obtain 

The values of probability (c,(t)12 as a function of w,r when wo = R and wor  = 2 for 
n = 0, 1, 2, 3 are given in table 1. c4 can be obtained from c,, c , ,  c 2 ,  c3 by letting n = 2 

Table I .  

W i l t  

Probability 0 0.50 0.75 1.00 1.25 1.50 1.75 2.00 

lcolz = exp(-2 Im P - 101') 1 0.979 89 0.945 70 0.877 1.5 0.775 94 0.638 30 0.554 66 0.430 63 
kI2 = Io/'/c~ll', 0 0.012 28 0.051 56 0.102 63 0.222 42 0.300 64 0.363 20 0.389 66 
/ C 2 l 2  = f lo l " lC ,~ l ;  0 0.00008 0.001 41 0.014 80 0.031 88 0.070 80 0.1 18 92 0.176 29 

0 0  0.000 03 0.000 71 0.003 05 0.01 I I 1  0.025 96 0.053 17 I C  12 -I 
3 - 6lQl6lc"I- 



Time-dependent harmonic oscillators 284 1 

in (72). Then we can obtain c5 by letting n = 3 in (72) ,  and so on. The above method 
of calculating probability is approximate. We have used (82) and  (83) to determine 
Q and p, but (82) and (83) are obtained for n =0,  1 and  we use these results to express 
c2 and c3. 
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